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Abstract

In this paper, we study the correlation functions of the quantum toroidal gln algebra. Their first key properties are estab-
lished in analogy to those of the correlation functions of quantum affine algebras Uqn+. The core of the paper is the proof of
the vanishing of those correlation functions at length 3 wheel conditions, which is done separately for n = 1, n = 2, n ≥ 3
cases with different “Master Equalities” of formal series (the n = 1 case has been previously discussed by the author in
(Cui, 2021)). Another important contribution is the discovery of cubic Serre relations for the quantum toroidal.

1. Introduction

The quantum toroidal algebras of gln, where n > 2,were introduced more than 20 years ago in (Ginzburg, 1995). However,
their representations are not fully understood yet. Surprisingly, the gl1 counterpart of those algebras, the quantum toroidal
gl1, has been introduced much later in (Feigin, 2011) and (Miki, 2007) and has attracted lots of attention over the last
decade from both mathematicians and physicists, due to its close relation to several other topics, which include

• the q-AGT conjecture

• spherical DAHA

• knot invariants

• the Hall algebra of an elliptic curve

Finally, the proper definition of the quantum toroidal algebra of gl2 was given only recently in (Feigin, 2016).

Yet another combinatorial perspective to the quantum toroidal algebras is given via the trigonometric version of the
Feigin-Odesskii elliptic shuffle algebras of (Feigin, 1997). In this approach, the elements of the “positive part” of the
quantum toroidal algebra are realized as rational symmetric functions subject to rather simple “pole condition” and more
interesting “wheel condition,” which specify the vanishing of those functions under certain specializations of the variables
to a multiple of each other.

An interesting perspective to the aforementioned “wheel” conditions was provided by Enriquez in (Enriquez, 2000),
where he explained how these conditions arise naturally in the study of the so-called correlation functions of quantum
affine algebras. The main objective of this paper is to establish similar properties of the correlation functions of the
quantum toroidal algebras, thus providing yet another perspective to the “wheel” conditions in the present setup. The case
of quantum toroidal algebras is particularly interesting in the setup of gln, since this is the only case when one has two
deformation parameters instead of a single one. Historically, it is common to encode those two parameters via q1, q2, q3
subject to the equality q1q2q3 = 1.

However, for n > 2, the defining relations for the quantum toroidal gln algebras look very similar to those of the quantum
affine algebras of gln, which will allow us to deduce the corresponding vanishing property from that of (Cui, 2021). This
only leaves the case n = 2 to consider, (the case n = 1 was treated in (Cui, 2021)) which is the primary subject of the
present note. In this case, we hook out the wheel condition by establishing a “Master Equality” of formal series. However,
the interesting discovery is that although the Master Equalities look vastly different for the cases n = 1, n = 2 and n ≥ 3,
the wheel conditions for all quantum toroidal gln algebras are quite similar in nature.

In addition, as we shall see, the studies of the correlation function for the quantum toroidal gl2 poses a particular problem.
When the Master Equalities were established in (Enriquez, 2000) and for the case of quantum toroidal gln, the “Serre
relation” that was essential in the process are of degree 3. However, the cubic form of the Serre relation for the quantum
toroidal gl2 case has not been discussed in the literature before. Thus in order to hook out the Wheel condition, the cubic
Serre relations for the quantum toroidal algebra of gl2 has to be determined first.
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2. Quantum Toroidal gln(n ≥ 3)

2.1 General Setup

Given non-zero complex numbers q1, q2, q3 ∈ C× satisfying q1q2q3 = 1, the quantum toroidal algebra Uq1,q2,q3 (gln) with
n ≥ 3 is defined uniquely. The algebra has generators {ei,k, fi,k, ψ±i,s}, where k ∈ Z, s ≥ 0, and i ∈ Zn viewed as residues
modulo n. More often, the numbers q1, q2, q3 will be written as d

q , q
2, 1

dq respectively for some complex numbers d, q ∈ C×.

These algebras have the so-called “triangular decomposition”, the first part of which means that the multiplication map
induces the vector space isomorphism:

U+
q1,q2,q3

(gln) ⊗ U0
q1,q2,q3

(gln) ⊗ U−q1,q2,q3
(gln)

∼
→ Uq1,q2,q3 (gln) (1)

where U+
q1,q2,q3

(gln),U0
q1,q2,q3

(gln),U−q1,q2,q3
(gln) are subalgebras generated by {ei,k}, {ψ

±
i,s}, { fi,k} respectively, while the sec-

ond part of the triangular decomposition is the fact that each of these subalgebras is defined by the above generators and
the corresponding relations.

Remark. We note that the entire quantum toroidal algebra Uq1,q2,q3 (gln) can be recovered as a Drinfeld double of
U+

q1,q2,q3
(gln).

Explicitly, the “positive” subalgebra U+
q1,q2,q3

(gln) is generated by {ei,k}
k∈Z
i∈Zn

subject to the quadratic relations and cu-
bic/quadratic Serre relations specified below:

Definition 1. The quadratic relation takes the following form:

di jgi j(z,w)ei(z)e j(w) = −g ji(w, z)e j(w)ei(z). (2)

where the series ei(z) is the formal series defined via

ei(z) :=
∑
k∈Z

ei,kz−k

which represents the current of “color i”. Here, the constant di j is defined as follows:

di j =


d−1 if j = i + 1
d if j = i − 1
1 otherwise

while
gi j(z,w) = z − qai j d−mi j w, (3)

with
ai j = 2δi j − δi, j+1 − δi, j−1, mi j = δi, j+1 − δi, j−1, (4)

for i, j ∈ Zn, where δi j is the Kronecker Delta.

Definition 2. Given any function F(a, b), in 2 variables, its “symmetrization”∑
sym{a,b}

F(a, b)

is defined via ∑
sym{a,b}

F(a, b) := F(a, b) + F(b, a)

Definition 3. The cubic Serre relation for these algebras takes the following form:∑
sym{z1,z2}

[ei(z1), [ei(z2), ei±1(w)]q]q−1 = 0, (5)

where [a, b]q = ab − q · ba. In addition, if j , i, i − 1, i + 1, then we also impose quadratic Serre relation:

[ei(z), e j(w)] = 0. (6)
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There are two crucial series (7), (8) that we shall be using in the rest of the paper.

Definition 4. For the formal variables x, y, the delta-function series δ(x, y) is defined via

δ(x, y) =
∑
k∈Z

xky−k−1. (7)

Definition 5. For the formal variables x, y, the series 1
x−y is defined via

1
x − y

:=
1
x

∞∑
i=0

( y
x

)i
=

∑
i<0

xiy−i−1. (8)

Note that the series in (8) converges to 1
x−y in the region |y| < |x| of C2.

Remark. We note the following equivalent expression for the delta-function:

δ(x, y) =
1

x − y
+

1
y − x

. (9)

2.2 Correlation Functions and Their Properties

Similar to what the author did in (Cui, 2021), let V be a highest weight representation of the algebra U+
q1,q2,q3

(gln), and its
correlation function is defined as below:

Definition 6. For any vector v ∈ V, and a covector ε ∈ V∗(the dual of V), consider the correlation function of the algebra
U+

q1,q2,q3
(gln) defined via

f
(
z(i1)

1 , · · · , z(iN )
N

)
=

〈
ε, ei1

(
z(i1)

1

)
· · · eiN

(
z(iN )

N

)
v
〉
, (10)

where ik is the Zn-“color” of the formal variable zk.

Our main result is that the correlation functions have to take a certain form:

Theorem 7.

f
(
z(i1)

1 , · · · , z(iN )
N

)
=

∏ia=ib
a<b

(
z(ia)

a − z(ib)
b

)
× A

(
z(i1)

1 , · · · , z(iN )
N

)
∏

a<b giaib

(
z(ia)

a , z(ib)
b

) . (11)

In the equation above, A
(
z(i1)

1 , · · · , z(iN )
N

)
is a color-symmetric Laurent polynomial and is subject to a certain “Vanishing

condition” discussed below.

Note that the theorem above, besides the vanishing condition, easily follows from the same deduction as in case of
U+

q1,q2,q3
(gl1), which has been demonstrated by the author in (Cui, 2021). Thus, the proof can be omitted.

Now, let us describe the vanishing properties for the function A
(
z(i1)

1 , · · · , z(iN )
N

)
in this case.

Theorem 8 (Vanishing property). If there exists 3 distinct variables
{
z(ip)

p , z(iq)
q , z(ir)

r

}
, where one of the following two con-

ditions are satisfied:

1. ip = iq, ir = ip + 1, z(ip)
p = t, z(iq)

q = q−2t, z(ir)
r = dq−1t

2. ip = iq, ir = ip − 1, z(ip)
p = t, z(iq)

q = q−2t, z(ir)
r = d−1q−1t

then the laurant polynomial A
(
z(i1)

1 , · · · , z(iN )
N

)
vanishes.

Instead of proving this result from scratch, let us deduce it from a similar result for quantum affine sl3 established in
(Enriquez, 2000).

Note that the quadratic relation in (2) implies two identities:

(z − q2w)ei(z)ei(w) = (q2z − w)ei(w)ei(z)

(d−1z − q−1w)ei(z)ei+1(w) = (q−1d−1z − w)ei+1(w)ei(z).
(12)
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Now, we are going to introduce some new notations. Define ẽi(z), ẽi+1(w) via

ẽi(z) = ei(z), ẽi+1(w) = ei+1(λw) (13)

for some λ to be determined later. Now, we shall replace the e-currents in the quadratic relations (12) with the ẽ-currents.
Note that the first relation in (12) stays the same under such a replacement. After the substitution takes place in the second
equality, we get

ẽi(z)̃ei+1(w) = ẽi+1(w)̃ei(z) ·
q−1d−1z − λw
d−1z − q−1λw

(14)

Note that when we choose λ = d−1, the last factor in the RHS of (14) is equal to q−1z−w
z−q−1w . And that factor is exactly the

same as the factor involved in the quadratic relation for the currents of the quantum affine sl3 algebra studied in (Enriquez,
2000). Thus, according to (Enriquez, 2000), we have:

Lemma 9. The function A
(
z̃1

(i1), · · · , z̃N
(iN )

)
vanishes when there exists 3 variables

z̃a
(ia), z̃b

(ib), z̃c
(ic), such that z̃a

(ia), z̃b
(ib) are are associated to the current ẽi and z̃c

(ic) is associated to the current ẽi+1 and
furthermore z̃a

(ia)
= t, z̃b

(ib)
= q−2t and z̃c

(ic)
= q−1t.

Switching back from {z̃a
(ia), z̃b

(ib), z̃c
(ic)
} into {z(ia)

a , z(ib)
b , z(ic)

c }, where z(ia)
a , z(ib)

b are associated with the current ei and z(ic)
c is

associated with the current ei+1. We see that Lemma 9 implies the first condition in Theorem 8.

To see the second condition of Theorem 8, one needs to follow a similar argument but considering ei−1(w) instead of
ei+1(w). The result now follows from that of (Enriquez, 2000) by considering ẽi(z) = ei(z), ẽi−1(w) = ei−1(λw), where
λ = d.

3. Quantum Toroidal gl2
3.1 General Setup

Let us now consider the remaining case of the quantum toroidal algebra of gl2 . The algebra Uq1,q2,q3 (gl2) is generated by
{ei,k, fi,k, ψ±i,s} with i ∈ Z2, k ∈ Z, s ∈ Z≥0 subject to their respective defining relations.

Definition 10. The quadratic relations take the following form:

(z − q2w)ei(z)ei(w) = (q2z − w)ei(w)ei(z)

(q2z − w) fi(z) fi(w) = (z − q2w) fi(w) fi(z)

(z − dq−1w)(z − (dq)−1w)ei(z)ei+1(w) = (w − dq−1z)(w − (dq)−1z)ei+1(w)ei(z)

(w − dq−1z)(w − (dq)−1z) fi(z) fi+1(w) = (z − dq−1w)(z − (dq)−1w) fi+1(w) fi(z)

(z − q2w)ψ±i (z)ei(w) = (q2z − w)ei(w)ψ±i (z)
ψ±i (z)ψ∓j (w) = ψ∓j (w)ψ±i (z)

(z − dq−1w)(z − (dq)−1w)ψ±i (z)ei+1(w) = (w − dq−1z)(w − (dq)−1z)ei+1(w)ψ±i (z)

(q2z − w)ψ±i (z) fi(w) = (z − q2w) fi(w)ψ±i (z)

(w − dq−1z)(w − (dq)−1z)ψ±i (z) fi+1(w) = (z − dq−1w)(z − (dq)−1w) fi+1(w)ψ±i (z)
[ei(z), fi+1(w)] = 0

[ei(z), fi+1(w)] = (q − q−1)−1(ψ+
i (z) − ψ−i (z)) · δ

( z
w

)

(15)

Definition 11 (Quartic Serre). The quartic Serre relation takes the following form:∑
sym{z1,z2,z3}

[ei(z1)[ei(z2), [ei(z3), ei+1(w)]q2 ]1]q−2 = 0. (16)

and the relations for f -currents are also similar.

Note that after expanding the q-brackets, the quartic general Serre relation is equivalent to∑
sym{z1,z2,z3}

(
ei(z1)ei(z2)ei(z3)e j(w) − pei(z1)ei(z2)e j(w)ei(z3)

+ pei(z1)e j(w)ei(z2)ei(z3) − e j(w)ei(z1)ei(z2)ei(z3)
)

= 0

(17)
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where p = 1 + q2 + q−2.

Let U+
q1,q2,q3

(gl2), U0
q1,q2,q3

(gl2), U−q1,q2,q3
(gl2) be the subalgebras generated by {ei,k}, { fi,k}, {ψ±i,r}. Then, the first part of the

triangular decomposition statement holds, i.e. the multiplication map

U+
q1,q2,q3

(gl2) ⊗ U0
q1,q2,q3

(gl2) ⊗ U−q1,q2,q3
(gl2)→ Uq1,q2,q3 (gl2) (18)

is a vector space isomorphism.

However, the second part of the triangular decomposition claim fails, that is, U+
q1,q2,q3

(gl2) and U−q1,q2,q3
(gl2) are the non-

trivial quotients of the algebras generated by {ei,k}, { fi,k} subject only to (17). Thus, one must first recover the new cubic
Serre relation in order to make both parts of the triangular decomposition statement to hold.

Similar to Section 2, we will primarily consider the algebra U+
q1,q2,q3

(gl2) generated by
{
ei,k

}k∈Z
i∈Z2

because of the idea of tri-
angular decompositions. However, as we will see later in the present section, the currents of U0

q1,q2,q3
(gl2) and U−q1,q2,q3

(gl2)
are essential in the derivation of the cubic Serre relation.

3.2 New Cubic Serre Relations

To obtain the cubic Serre relation from the general quartic Serre relation, we will have to first look at the simplest case of
the general relation. Specifically, by looking at the coefficient of z0

1z0
2z0

3w−k for some k ∈ Z in (17), we get the following
identity:

e3
i,0e j,k − pe2

i,0e j,kei,0 + pei,0e j,ke2
i,0 − e j,ke3

i,0 = 0 for j , i (19)

where p = 1 + q2 + q−2 as before.

The first non-trivial step is to commute the equation above with the fi,k generators.

Remark. Commuting (19) with fi,0 results in the trivial equality.

Thus, we shall instead commute it with (q − q−1) fi,1.

Lemma 12. The following two identities hold:

[ei,0, (q − q−1) fi,1] = ψ+
i,1

[e j,k, (q − q−1) fi,1] = 0 for j , i
(20)

Theorem 13. When we commute (19) with (q − q−1) fi,1, we get(
ψ+

i,1e2
i,0 + ei,0ψ

+
i,1ei,0 + e2

i,0ψ
+
i,1

)
e j,k − p

(
ψ+

i,1ei,0e j,kei,0 + ei,0ψ
+
i,1e j,kei,0 + e2

i,0e j,kψ
+
i,1

)
+p

(
ψ+

i,1e j,ke2
i,0 + ei,0e j,kψ

+
i,1ei,0 + ei,0e j,kei,0ψ

+
i,1

)
− e j,k

(
ψ+

i,1e2
i,0 + ei,0ψ

+
i,1ei,0 + e2

i,0ψ
+
i,1

)
= 0

(21)

Next, let us rewrite (21) by pulling all the ψ terms to the leftmost side in each term. For the sake of simplicity, we shall
only demonstrate how to do so for the first term in (21).

According to the quadratic relation, we have that:

(z − q2w)ψ+
i (z)ei(w) = (q2z − w)ei(w)ψ+

i (z). (22)

which implies the following:

Lemma 14. The following identity holds by checking the coefficients in the quadratic relation:

ψ+
i,k+1ei,l − q2ψ+

i,kei,l+1 = q2ei,lψ
+
i,k+1 − ei,l+1ψ

+
i,k (23)

In (23), if k = −1, then ψ+
i,−1 = 0 and we recover that

ψ+
i,0ei,l = q2ei,lψ

+
i,0. (24)
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Moreover, if k, l = 0, then we get:

ψ+
i,1ei,0 − q2ψ+

i,0ei,1 = q2ei,0ψ
+
i,1 − ei,1ψ

+
i,0

=⇒ q2ei,0ψ
+
i,1 = ψ+

i,1ei,0 + ei,1ψ
+
i,0 − q2ψ+

i,0ei,1

=⇒ ei,0ψ
+
i,1 = q−2ψ+

i,1ei,0 + (q−4 − 1)ψ+
i,0ei,1

(25)

We shall also need the following particular case of the first quadratic relation of (15) obtained by comparing the coefficients
of z0w0:

ei,1ei,0 = q2ei,0ei,1 (26)

Due to (23), (24) and (25), we can finally start operating on the first sum in (21).

Theorem 15. The first sum in (21) equals

(1 + q−2 + q−4)ψ+
i,1e2

i,0e j,k + (1 + q−2)(q−4 − q2)ψ+
i,0ei,0ei,1e j,k (27)

By following a similar strategy, let us also pull ψ-terms to the left in the other 3 terms of (21). We note the following
lemma:

Lemma 16. The following identity follows from (15):

e j,lψ
+
i,1 = q2ψ+

i,1e j,l + (q2 − 1)(qd−1 + qd)ψ+
i,0e j,l+1 for j , i, l ∈ Z. (28)

The proof is completely analogous to that of Lemma 14. Thus, we obtain:

Theorem 17. The second term in (21) equals

ψ+
i,1ei,0e j,kei,0 + ei,0ψ

+
i,1e j,kei,0 + e2

i,0e j,kψ
+
i,1

=ψ+
i,1

(
(1 + q−2)ei,0e j,kei,0 + q−2e2

i,0e j,k

)
+ψ+

i,0

(
(q−4 − 1)ei,1e j,kei,0 + (q−2 − q−4)(qd−1 + qd)e2

i,0e j,k+1 + (q2 + 1)(q−4 − 1)ei,0ei,1e j,k

) (29)

The third term in (21) equals

ψ+
i,1e j,ke2

i,0 + ei,0e j,kψ
+
i,1ei,0 + ei,0e j,kei,0ψ

+
i,1

=ψ+
i,1

(
e j,ke2

i,0 + (q−2 + 1)ei,0e j,kei,0

)
+ψ+

i,0

(
(q2 + 1)(q−4 − 1)ei,1e j,kei,0 + (1 − q−4)(qd−1 + qd)ei,0e j,k+1ei,0 + (q−4 − 1)ei,0e j,kei,1

) (30)

And the last term in (21) equals

e j,k

(
ψ+

i,1e2
i,0 + ei,0ψ

+
i,1ei,0 + e2

i,0ψ
+
i,1

)
=ψ+

i,1(q2 + 1 + q−2)e j,ke2
i,0

+ψ+
i,0

(
(q2 + 1 + q−2)(1 − q−2)(qd−1 + qd)e j,k+1e2

i,0 + (q2 + 1 + q−2)(q−2 − q2)e j,kei,0ei,1

) (31)

Now, we know that the 4 equations declared above add up to 0 due to (21). Thus, we would group terms with the same
ψ-term in front. However, in that process, it can be easily checked that the terms with ψ+

i,1 cancel out, and we only have to
deal with the terms with ψ+

i,0.

Lemma 18. The following expression contains the sum of all terms with ψ+
i,0

ψ+
i,0(q2 + 1 + q−2)(1 − q−2)×(
− q−2(qd−1 + qd)e2

i,0e j,k+1 + (1 + q−2)(qd−1 + qd)ei,0e j,k+1ei,0 − (qd−1 + qd)e j,k+1e2
i,0

+ (1 + q2)ei,0ei,1e j,k + (1 + q2)e j,kei,0ei,1 − (1 + q−2)ei,0e j,kei,1 − (1 + q2)ei,1e j,kei,0

) (32)

In particular, this sum must vanish.
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However, it can be easily checked that we can simplify it to the following form:

Proposition 19. The fact that (32) equals 0 is equivalent to the following identity:

(1 + q2)[[e j,k, ei,0]q−2 , ei,1]1 = (qd−1 + qd)[[e j,k+1, ei,0]q−2 , ei,0]1 (33)

Thus, (33) already provides a specific cubic Serre relation. However, we would like to get the more general relation,
i.e. cubic relations with arbitrary modes allowed instead of ei,0, ei,1. Such generaliziation utilizes the following important
elements hi,s:

Proposition 20. For s , 0, there exist an element hi,s ∈ U0
q1,q2,q3

(gl2) such that

[hi,s, e j,k] = 0 for j , i and any k ∈ Z
[hi,s, ei,k] = ei,k+s

(34)

Before presenting specific formulas for such h-terms, let us first illustrate how they allow us to deduce general cubic Serre
relations from Lemma 19.

Lemma 21. Fix any l1, l2 ∈ Z. Commuting (33) with hi,l1 and then hi,l2 gives:

(1 + q2)
(
[[e j,k, ei,l1+l2 ]q−2 , ei,1]1 + [[e j,k, ei,l1 ]q−2 , ei,l2+1]1

+[[e j,k, ei,l2 ]q−2 , ei,l1+1]1 + [[e j,k, ei,0]q−2 , ei,l1+l2+1]1

)
=(qd−1 + qd)

(
[[e j,k+1, ei,l1+l2 ]q−2 , ei,0]1 + [[e j,k+1, ei,l1 ]q−2 , ei,l2 ]1

+[[e j,k+1, ei,l2 ]q−2 , ei,l1 ]1 + [[e j,k+1, ei,0]q−2 , ei,l1+l2 ]1

)
(35)

Lemma 22. Commmuting (33) with hi,l1+l2 instead, we get:

(1 + q2)
(
[[e j,k, ei,l1+l2 ]q−2 , ei,1]1 + [[e j,k, ei,0]q−2 , ei,l1+l2+1]1

)
=(qd−1 + qd)

(
[[e j,k+1, ei,l1+l2 ]q−2 , ei,0]1 + [[e j,k+1, ei,0]q−2 , ei,l1+l2 ]1

) (36)

Subtracting (36) from (35), we eventually get:

(1 + q2)
(
[[e j,k, ei,l1 ]q−2 , ei,l2+1]1 + [[e j,k, ei,l2 ]q−2 , ei,l1+1]1

)
=(qd−1 + qd)

(
[[e j,k+1, ei,l1 ]q−2 , ei,l2 ]1 + [[e j,k+1, ei,l2 ]q−2 , ei,l1 ]1

) (37)

for any modes k, l1, l2 ∈ Z. This is the general cubic Serre relation. Let us rewrite it using currents:

Theorem 23 (General Cubic Serre). The general cubic Serre relation takes the following form

(1 + q2)
∑

sym{z1,z2}

(
[[e j(w), ei(z1)]q−2 , ei(z2)]1 · z2

)
= (qd−1 + qd)

∑
sym{z1,z2}

(
[[e j(w), ei(z1)]q−2 , ei(z2)]1 · w

)
(38)

Note that after expansion of q-brackets, we obtain the following equality:

Theorem 24. ∑
sym{z1,z2}

(
ei(z1)ei(z2)e j(w)((1 + q−2)z1 − (q1 + q3)w)

−ei(z1)e j(w)ei(z2)((1 + q2)z1 − (q1 + q3 + q−1
1 + q−1

3 )w + (1 + q−2)z2)

+e j(w)ei(z1)ei(z2)((1 + q2)z2 − (q−1
1 + q−1

3 )w)
)

= 0

(39)
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To complete the above argument, we finally prove the existence of the h-terms, see Proposition 20.

Let
F(z,w) := log(1 − q−2wz−1) − log(1 − q2wz−1).

Lemma 25. Consider elements {Hi,t}t>0 that commute with {ei,s}s∈Z via

[Hi,t, ei,s] =
q2t − q−2t

t
ei,s+t. (40)

Then
exp Hi(z) · ei(w) = ei(w) · exp Hi(z) · exp F(z,w) (41)

where Hi(z) :=
∑

t>0 Hi,tz−t

Proof. We shall ignore the index i for simplicity. Using (40) let us then compute the commutation between H(z) and e(w):

[H(z), e(w)] =
∑

t>0,s∈Z
z−tw−s[Ht, es]

=
∑

t>0,r=s+t∈Z
er · w−r · wtz−t ·

q2t − q−2t

t

= e(w) ·
∑
t>0

t−1
(q2w

z

)t

−

(
q−2w

z

)t
= e(w) · F(z,w)

(42)

Note that

eH(z) · e(w) · e−H(z) =

(
1 + H(z) +

H2(z)
2!

+ · · ·

)
e(w)

(
1 − H(z) +

H2(z)
2!

+ · · ·

)
= e(w) + (H(z)e(w) − e(w)H(z))

+ (2!)−1(H2(z)e(w) + e(w)H2(z) − 2H(z)e(w)H(z)) + · · ·

(43)

In (43), note that the second term equals e(w) · F(z,w), and the third term equals

(2!)−1
(
H(z) · [H(z), e(w)] − [H(z), e(w)] · H(z)

)
=

F(z,w)
2!

(H(z)e(w) − e(w)H(z)) = e(w) ·
F2(z,w)

2!
.

(44)

We claim that the right-hand side of (43) equals e(w) ·
∑

t≥0
Ft(z,w)

t! . Indeed, it is easy to check that the term with coefficient
1
k! in (43) is equal to 1

k! [H(z), e(w)Fk−1(z,w)], where the term Fk−1(z,w) can be replaced by the terms with coefficient
1

(k−1)! . �

Let us now show how such elements Hi,t satisfying Lemma 25 can be obtained from the Cartan currents ψ±i .

Definition 26. Define

ψ
±

i (z) =
ψ±i (z)
ψ±i,0

= 1 +
ψ±i,1

ψ±i,0
z∓1 +

ψ±i,2

ψ±i,0
z∓2 + · · ·

and define elements {Hi,k}k,0 via ∑
k≥1

Hi,±kz∓k = ±log(ψ
±

i (z))

Note that the quadratic relation (15) gives us

ψ±i (z)ei(w) = ei(w)ψ±i (z) ·
q2z − w
z − q2w

(45)
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Using (24), we obtain

ψ
+

i (z)ei(w) = ei(w)ψ
+

i (z) ·
1 − q−2wz−1

1 − q2wz−1

ψ
−

i (z)ei(w) = ei(w)ψ
−

i (z) ·
1 − q2w−1z
1 − q−2w−1z

(46)

This indeed shows that exp H(z) and ψ
±

i (z) commute in the same fashion with ei(z). Therefore, when defining Hi,k via
±log(ψ

±

i (z)) as in Definition 26, they should exactly satisfy the same commutation relations as the H− terms in (40), not
only for k > 0 but also for k < 0.

Similarly, one can show that for i , j and any integers s, t ∈ Z for t , 0, we have:

[Hi,t, e j,s] =

(
q−t

1 + q−t
3 − qt

1 − qt
3

t

)
e j,s+t (47)

Now, with the relations between H-terms and e-terms figured out, it is time to unravel the h-terms. We wish to find h-terms
obeying (34), and we will represent them using linear combination of the H-terms. This can be easily achieved assuming
the matrix [

q2t − q−2t q−t
1 + q−t

3 − qt
1 − qt

3
q−t

1 + q−t
3 − qt

1 − qt
3 q2t − q−2t

]
(48)

is non-degenerate for general choice of q, d (q3 = (dq)−1, q1 = dq−1), namely, set:[
h0,t
h1,t

]
= t ·

[
q2t − q−2t q−t

1 + q−t
3 − qt

1 − qt
3

q−t
1 + q−t

3 − qt
1 − qt

3 q2t − q−2t

]−1

·

[
H0,t
H1,t

]
(49)

But for the determinant of (48) to vanish, d has to satisfy (dt + d−t)2 = (qt − q−t)2, hence it is generically non-zero. This
completes our proof of Proposition 20.

3.3 Master Equality for gl2
Similar to the gl1 case treated in (Cui, 2021), the key vanishing property of the correlation functions for U+

q1,q2,q3
(gl2)

crucially relies on the following “Master Equality”:

Theorem 27 (Master Equality).

∑
sym{z1,z2}

z1 − z2

z1 − q2z2
×

(
(1 + q−2)z1 − (q1 + q3)w

(z1 − q1w)(z1 − q3w)(z2 − q1w)(z2 − q3w)

+
(1 + q2)z1 − (q1 + q3 + q−1

1 + q−1
3 )w + (1 + q−2)z2

(z1 − q1w)(z1 − q3w)(w − q1z2)(w − q3z2)

+
(1 + q2)z2 − (q−1

1 + q−1
3 )w

(w − q1z1)(w − q3z1)(w − q1z2)(w − q3z2)

)
=

∑
sym{z1,z2}

(
α

w
· δ(z2, q2z1) · δ(z1, q3w) +

β

z1
· δ(z2, q1w) · δ(w, q3z1)

)
(50)

where

α =
1

q3 − q1
, β =

2 + 2q−2 − q1 − q3 − q−1
1 − q−1

3

q2(1 + q−1
2 )(q3 − q1)(q2

3 − q−1
2 )

(51)

Proof. Using the arguments of analytic continuation, it suffices to prove (50) under the condition that |q1|, |q2| < 1 and thus
|q3| > 1. Then, we switch any term of the denominator that cannot be represented by the same-named rational function
in an open neighborhood of z1 = z2 = w using delta-functions. Explicitly, if |γ| > 1, then we would replace 1

a−γb by
δ(a, γb) − 1

γb−a , see (9).
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Lemma 28 (terms without delta-factors cancel). The following equality of rational functions holds:∑
sym{z1,z2}

z1 − z2

z1 − q2z2
×

(
(1 + q−2)z1 − (q1 + q3)w

(z1 − q1w)(q3w − z1)(z2 − q1w)(q3w − z2)

+
(1 + q2)z1 − (q1 + q3 + q−1

1 + q−1
3 )w + (1 + q−2)z2

(z1 − q1w)(q3w − z1)(w − q1z2)(q3z2 − w)

+
(1 + q2)z2 − (q−1

1 + q−1
3 )w

(w − q1z1)(q3z1 − w)(w − q1z2)(q3z2 − w)

)
= 0

(52)

Proof. This result can be easily verified with Matlab. �

Lemma 29 (terms with two delta-factors cancel). The following equality holds:∑
sym{z1,z2}

z1 − z2

z1 − q2z2
×

(
(1 + q−2)z1 − (q1 + q3)w

(z1 − q1w)(z2 − q1w)
· δ(z1, q3w)δ(z2, q3w)

+
(1 + q2)z1 − (q1 + q3 + q−1

1 + q−1
3 )w + (1 + q−2)z2

(z1 − q1w)(w − q1z2)
· δ(z1, q3w)δ(w, q3z2)

+
(1 + q2)z2 − (q−1

1 + q−1
3 )w

(w − q1z1)(w − q1z2)
· δ(w, q3z1)δ(w, q3z2)

)
= 0

(53)

Proof. Actually, we claim that each summand in the LHS of (29) vanishes. For example, let us verify this for the first
summand. We can replace z1, z2 both by q3w because of the delta-factors, and hence we get 0 due to the factor (z1 − z2).
This idea can be similarly applied to the other two summands, where we replace two of the variables by the third and get
a zero factor in front. �

Finally, let us consider the terms with a single delta-function factor: δ(zi, q3w) or δ(w, q3zi) with i = 1 or 2. For demon-
stration, let us look at the coefficient of δ(z1, q3w). It is precisely

−
(z1 − z2)((1 + q−2)z1 − (q1 + q3)w)

(z1 − q2z2)(z1 − q1w)(z2 − q1w)(q3w − z2)
−

−
(z2 − z1)((1 + q−2)z2 − (q1 + q3)w)

(z2 − q2z1)(z2 − q1w)(z1 − q1w)(q3w − z2)
+

+
(z1 − z2)((1 + q2)z1 − (q1 + q3 + q−1

1 + q−1
3 )w + (1 + q−2)z2)

(z1 − q2z2)(z1 − q1w)(w − q1z2)(q3z2 − w)

(54)

First, let us first replace z1 by q3w in (54) due to the delta-factor δ(z1, q3w), so that (54) is replaced by

−
(q3w − z2)((1 + q−2)q3w − (q1 + q3)w)

(q3w − q2z2)(q3w − q1w)(z2 − q1w)(q3w − z2)
−

−
(z2 − q3w)((1 + q−2)z2 − (q1 + q3)w)

(z2 − q2q3w)(z2 − q1w)(q3w − q1w)(q3w − z2)
+

+
(q3w − z2)((1 + q2)q3w − (q1 + q3 + q−1

1 + q−1
3 )w + (1 + q−2)z2)

(q3w − q2z2)(q3w − q1w)(w − q1z2)(q3z2 − w)

(55)

Note that the only “bad” factor of (55) in an open neighborhood of z2 = w is 1
z2−q2q3w , as |q2q3| = |q−1

1 | > 1. Therefore,
we have to replace it by δ(z2, q−1

1 w)− 1
q−1

1 w−z2
. After this replacement, note that the terms without delta-factors vanish once

again, i.e, we have the following equality of rational functions:

−
(q3w − z2)((1 + q−2)q3w − (q1 + q3)w)

(q3w − q2z2)(q3w − q1w)(z2 − q1w)(q3w − z2)
−

−
(z2 − q3w)((1 + q−2)z2 − (q1 + q3)w)

(q2q3w − z2)(z2 − q1w)(q3w − q1w)(q3w − z2)
+

+
(q3w − z2)((1 + q2)q3w − (q1 + q3 + q−1

1 + q−1
3 )w + (1 + q−2)z2)

(q3w − q2z2)(q3w − q1w)(w − q1z2)(q3z2 − w)
= 0.

(56)
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On the other hand, after replacing z2 by q−1
1 w due to the delta-factor δ(z2, q−1

1 w), (55) turns into

(q−1
1 w − q3w)((1 + q−2)q−1

1 w − (q1 + q3)w)

(q−1
1 w − q1w)(q3w − q1w)(q3w − q−1

1 w)
· δ(z2, q−1

1 w) (57)

which is equal to
1

q3 − q1
·

1
w
· δ(z2, q−1

1 w). (58)

It remains to note that δ(z1, q3w)δ(z2, q−1
1 w) = δ(z1, q3w)δ(z2, q2z1).

Similarly, one can show that the coefficient of the delta-function term δ(w, q3z1) is equal to

2 + 2q−2 − q1 − q3 − q−1
1 − q−1

3

q2(1 + q−1
2 )(q3 − q1)(q2

3 − q2)
·

1
z1
· δ(z2, q−1

2 z1) (59)

This completes the proof of Theorem 27. �

3.4 Correlation Function of gl2
Definition 30. Let V be a Z-graded representation of U+

q1,q2,q3
(gl2) with degrees bounded from above. For any v ∈ V, ε ∈

V∗, consider the correlation function of the algebra U+
q1,q2,q3

(gl2) defined via

f
(
z(i1)

1 , · · · , z(iN )
N

)
=

〈
ε, ei1

(
z(i1)

1

)
· · · eiN

(
z(iN )

N

)
v
〉
, (60)

where ik ∈ Z2 is the ”color” of the formal variable zk.

Again, the simple properties of all the correlation functions are similar to n = 1 and n > 2 cases:

Theorem 31.

f
(
z(i1)

1 , · · · , z(iN )
N

)
=

∏ia=ib
a<b

(
z(ia)

a − z(ib)
b

)
× A

(
z(i1)

1 , · · · , z(iN )
N

)
∏

a<b giaib

(
z(ia)

a , z(ib)
b

) . (61)

where
gii(z,w) = z − q2w, gii+1(z,w) = (z − dq−1w)(z − (dq)−1w), (62)

and A
(
z(i1)

1 , · · · , z(iN )
N

)
is a color-symmetric Laurent polynomial.

The proof of Theorem 31 is almost identical to that of Lemma 3.5 in (Cui, 2021) for the case of gl1 and to the case
of gln(n > 2) as treated in the previous section. In addition, the Laurant polynomial A is subject to the key vanishing
condition specified below:

Theorem 32. If there exist 3 distinct variables
{
z(ip)

p , z(iq)
q , z(ir)

r

}
where ip = iq, ir , ip, such that one of the following two

conditions are met:

1. z(ip)
p = t, z(iq)

q = q−2t, z(ir)
r = dq−1t

2. z(ip)
p = t, z(iq)

q = q−2t, z(ir)
r = d−1q−1t

then the Laurant polynomial A
(
z(i1)

1 , · · · , z(iN )
N

)
vanishes.

Proof. For simplicity, we shall consider the case of 3 variables involved (while the general case is treated completely
analogously). We shall call z(i1)

1 , z(i2)
2 , z(i3)

3 simply by z1, z2,w.

Due to the General Cubic Serre relation (39), we know that the natural pairing between ε and ωv equals 0 where ω is the
LHS of (39). Specifically,

A (z1, z2,w) ·
∑

sym{z1,z2}

z1 − z2

z1 − q2z2
×

(
(1 + q−2)z1 − (q1 + q3)w

(z1 − q1w)(z1 − q3w)(z2 − q1w)(z2 − q3w)

+
(1 + q2)z1 − (q1 + q3 + q−1

1 + q−1
3 )w + (1 + q−2)z2

(z1 − q1w)(z1 − q3w)(w − q1z2)(w − q3z2)

+
(1 + q2)z2 − (q−1

1 + q−1
3 )w

(w − q1z1)(w − q3z1)(w − q1z2)(w − q3z2)

)
= 0

(63)
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Therefore, by the Master Equality (50), we get:

A (z1, z2,w)
∑

sym{z1,z2}

(
α

w
· δ(z2, q2z1) · δ(z1, q3w) +

β

z2
· δ(z2, q1w) · δ(w, q3z1)

)
= 0 (64)

Thus, the vanishing condition of A follows from the linear independence of the double products of delta-factors, which is
proven exactly as in Theorem 5.3 of (Cui, 2021) �

Remark. At this point, it becomes clear that the Master Equality (50) did not emerge from nothing. It is essentially just
the coefficient that we obtain after we establish the result for the natural pairing between the chosen covector and the
vector with the LHS of the novel cubic Serre relation (39)
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